Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.437
Filtrar
1.
Future Med Chem ; 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578146

RESUMO

Aim: Breast cancer has been a leading cause of mortality among women worldwide in recent years. Targeting the lysophosphatidic acid (LPA)-LPA1 pathway using small molecules could improve breast cancer therapy. Materials & methods: Thiazolidin-4-ones were developed and tested on MCF-7 cancer cells, and active compounds were analyzed for their effects on apoptosis, migration angiogenesis and LPA1 protein and gene expression. Results & conclusion: Compounds TZ-4 and TZ-6 effectively reduced the migration of MCF-7 cells, and induced apoptosis. TZ-4, TZ-6, TZ-8 and TZ-14 significantly reduced the LPA1 protein, LPA1 and angiogenesis gene expression in treated MCF-7 cells. Molecular docking and molecular dynamic simulation studies reveal the ligand interactions and stability of the LPA1-ligand complex. Developed thiazolidin-4-ones showed great potential as an LPA1-targeted approach to combating breast cancer.


Breast cancer is a major cause of death for women worldwide. Using small molecules to target the lysophosphatidic acid (LPA)­LPA1 pathway could improve breast cancer treatment. We tested a type of molecule called thiazolidin-4-ones on breast cancer cells in the lab. We looked at how these molecules affected cell death, movement, blood vessel growth and the activity of the LPA1 gene and protein. Some of these molecules, such as TZ-4 and TZ-6, reduced the movement of cancer cells and caused them to die. They also decreased the levels of LPA1 protein and gene activity in the cells. We used computer simulations to see how these molecules interacted with the LPA1 protein. Our findings suggest that thiazolidin-4-ones could be a promising treatment for breast cancer by targeting LPA1.

2.
Cureus ; 16(3): e55915, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38601373

RESUMO

Aim This study aimed to evaluate the cytotoxicity of a novel compound, 4-hydroxycinnamic acid (4-HCA), with the help of a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and zebrafish embryotoxicity. Materials and methods In this in vitro study, MTT fibroblast assays using dental pulp stem cells, which were cultured in Modified Eagle's Medium or Dulbecco's Modified Eagle Medium, and zebrafish cytotoxicity and embryotoxicity were done to evaluate the cytotoxicity of the novel compound 4-HCA. The data was analyzed by plotting cell number versus absorbance, allowing quantitation of changes in cell proliferation. Results 4-HCA (40 µl) showed acceptable levels of cell viability according to the American Society for Testing and Materials standards. Cell viability is reduced with increased exposure time and concentrations of 4-HCA. Similarly, the cytotoxicity assessment in zebrafish (Danio rerio) showed an acceptable range of toxicity levels in embryonic stages used to evaluate the mortality rate of zebrafish embryos. Conclusion Considering the constraints of this research, it can be deduced that hydroxycinnamic acid at a concentration of 40 µl was non-toxic. The findings from the MTT assay indicated a correlation between the concentration and the toxicity of the compound. Likewise, the zebrafish test demonstrated minimal toxicological effects.

3.
J Environ Sci Health B ; 59(5): 277-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600794

RESUMO

The organophosphate insecticide chlorpyrifos (CPF), an acetylcholinesterase inhibitor, has raised serious concerns about human safety. Apart from inducing synaptic acetylcholine accumulation, CPF could also act at nicotinic acetylcholine receptors, like the α7-isoform (α7-nAChR), which could potentially be harmful to developing brains. Our aims were to use molecular docking to assess the binding interactions between CPF and α7-nAChR through, to test the neurocytotoxic and oxidative effects of very low concentrations of CPF on SH-SY5Y cells, and to hypothesize about the potential mediation of α7-nAChR. Docking analysis showed a significant binding affinity of CPH for the E fragment of the α7-nAChR (ΔGibbs: -5.63 to -6.85 Kcal/mol). According to the MTT- and Trypan Blue-based viability assays, commercial CPF showed concentration- and time-dependent neurotoxic effects at a concentration range (2.5-20 µM), ten-folds lower than those reported to have crucial effects for sheer CPF. A rise of the production of radical oxygen species (ROS) was seen at even lower concentrations (1-2.5 µM) of CPF after 24h. Notably, our docking analysis supports the antagonistic actions of CPF on α7-nAChR that were recently published. In conclusion, while α7-nAChR is responsible for neuronal survival and neurodevelopmental processes, its activity may also mediate the neurotoxicity of CPF.


Assuntos
Clorpirifos , Neuroblastoma , Receptores Nicotínicos , Humanos , Clorpirifos/toxicidade , Simulação de Acoplamento Molecular , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolinesterase/metabolismo , Receptores Nicotínicos/metabolismo
4.
Curr Med Chem ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38616761

RESUMO

BACKGROUND/AIM: Glioblastoma is an extensively malignant neoplasm of the brain that predominantly impacts the human population. To address the challenge of glioblastoma, herein, we have searched for new drug-like candidates by extensive computational and biochemical investigations. METHOD: Approximately 950 compounds were virtually screened against the two most promising targets of glioblastoma, i.e., epidermal growth factor receptor (EGFR) and phosphoinositide 3-kinase (PI3K). Based on highly negative docking scores, excellent binding capabilities and good pharmacokinetic properties, eight and seven compounds were selected for EGFR and PI3K, respectively. RESULTS: Among those hits, four natural products (SBEH-40, QUER, QTME-12, and HCFR) exerted dual inhibitory effects on EGFR and PI3K in our in-silico analysis; therefore, their capacity to suppress the cell proliferation was assessed in U87 cell line (type of glioma cell line). The compounds SBEH-40, QUER, andQTME-12 exhibited significant anti-proliferative capability with IC50 values of 11.97 ± 0.73 µM, 28.27 ± 1.52 µM, and 22.93 ± 1.63 µM respectively, while HCFR displayed weak inhibitory potency (IC50 = 74.97 ± 2.30 µM). CONCLUSION: This study has identified novel natural products that inhibit the progression of glioblastoma; however, further examinations of these molecules are required in animal and tissue models to better understand their downstream targeting mechanisms.

5.
Mikrochim Acta ; 191(5): 261, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38613580

RESUMO

Contrast enhancement is explored in optical coherence tomography images using core NaYF4:Ho3+/Yb3+ and core@shell NaYF4:Ho3+/Yb3+@NaGdF4 nanoparticles. Under 980 nm excitation, core@shell nanoparticles exhibited 2.8 and 3.3 times enhancement at 541 nm and 646 nm emission wavelengths of Ho3+ ions compared to core nanoparticles. Photo-thermal conversion efficiencies were 32% and 20% for core and core@shell nanoparticles. In swept-source optical coherence tomography (SSOCT), core@shell nanoparticles have shown superior contrast, while in photo-thermal optical coherence tomography (PTOCT) core nanoparticles have excelled due to their higher photo-thermal conversion efficiency. The enhancement in contrast to noise ratio obtained is 58 dB. Comparative assessments of scattering coefficients and contrast-to-noise ratios were conducted, providing insights into nanoparticle performance for contrast enhancement in optical coherence tomography.

6.
Protein Expr Purif ; 219: 106484, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614377

RESUMO

Cancer and antibiotic resistance represent significant global challenges, affecting public health and healthcare systems worldwide. Lectin, a carbohydrate-binding protein, displays various biological properties, including antimicrobial and anticancer activities. This study focused on anticancer and antibacterial properties of Alocasia macrorrhiza lectin (AML). AML, with a molecular weight of 11.0 ± 1.0 kDa was purified using Ion-exchange chromatography, and the homotetrameric form was detected by gel-filtration chromatography. It agglutinates mouse erythrocytes, that was inhibited by 4-Nitrophenyl-α-d-mannopyranoside. Maximum hemagglutination activity was observed below 60 °C and within a pH range from 8 to 11. Additionally, it exhibited moderate toxicity against brine shrimp nauplii with LD50 values of 321 µg/ml and showed antibacterial activity against Escherichia coli and Shigella dysenteriae. In vitro experiments demonstrated that AML suppressed the proliferation of mice Ehrlich ascites carcinoma (EAC) cells by 35 % and human lung cancer (A549) cells by 40 % at 512 µg/ml concentration. In vivo experiments involved intraperitoneal injection of AML in EAC-bearing mice for five consecutive days at doses of 2.5 and 5.0 mg/kg/day, and the results indicated that AML inhibited EAC cell growth by 37 % and 54 %, respectively. Finally, it can be concluded that AML can be used for further anticancer and antibacterial studies.

7.
Cureus ; 16(3): e56300, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38629020

RESUMO

Background This study investigates Merremia emarginata's curative effectiveness against colon cancer cells. M. emarginata, often known as Elika jemudu, is a Convolvulaceae family plant. The inhibitory ability of anticancer herbal extracts against cancer cell growth and mediators is tested.  Aim This study aims to evaluate the potent anticancer activity of M. emarginata against colon cancer cell line (HT-29). Materials and methods M. emarginata leaves were gathered and processed using solvent extraction. Anticancer activity on colon cancer cells was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test and cysteine aspartic acid protease-3 (caspase 3), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra large (Bcl-xL) mRNA expressions. The data was reported as the mean ± SD of three separate experiments done in triplicate. The statistical analysis was carried out using one-way analysis of variance (ANOVA), with a p-value less than 0.05 indicating statistical significance. Results The cell viability test showed a gradual decrease in cell growth and proliferation as the concentration increased. The ethanolic extract of M. emarginata was found to be cytotoxic against colon caller cell lines. The extract was able to induce apoptosis of cancer as revealed by Bcl-2, Bcl-xL, and caspase-3 (p<0.05 and p<0.001) signaling pathways. Conclusion M. emarginata extracts showed good anticancer activity against colon cancer cell lines. Further work is required to establish and identify the chemical constituent responsible for its anticancer activity.

8.
Environ Anal Health Toxicol ; 39(1): e2024001-0, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38631393

RESUMO

Breast and hepatic cancers are the leading incidences in the globe occurring of the human sufferings from various cancers. Snake venoms have been reported to provide effective therapeutic agents. The current study investigates the anticancer potency of Egyptian venoms snakes on two cells: breast cancer cells (MCF-7) and hepato-cancer cells (HepG2) (In vitro assay). The examined venoms were more potent on MCF-7 than HepG2 cells. Their inhibition % on MCF-7 ranged from 71.47 to 99.02% with medium inhibition concentrations (IC50s): 3.48, 3.60, 3.70, 4.33, and 4.49 µg/ml for venoms: Echis pyramid (E.H), Cerastes vipera (C.V), Naja haje (N.H), Echis coloratus (E.C), and Cerastes cerastes (C.C), respectively. The values of IC50s on HepG2 were 4.32, 17.77, 59.72, 63.75, and 217.90 µg/ml for toxins: E.C, E.P, C.V, C.C, and N.H, respectively. Some biomarkers were conducted to investigate the apoptotic effects of toxins into the cells. Increasing profiles of lactate dehydrogenase (LDH) activity and levels of glutathione content (GSH) and malodialdhyde (MDA) as well as repairment of DNA indicated such these actions. So, more reliable investigations on these venoms were needed to provide intelligent therapeutic agent for cancer treatment.

9.
Biol Futur ; 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38662325

RESUMO

In recent years, the rapid development of nanotechnology has caused the products obtained with this technology to be used more daily. Information on the effects of these products, which provide great advantages in every respect, on human health and the environment is insufficient. It has been suggested that these nanoparticles may have toxic effects on living things, mostly in animal experiments and cell cultures. In this paper, the organism Caenorhabditis elegans (C. elegans), which contains a genome and biochemical ways highly similar to humans, is used to understand and reveal the metabolism of Zinc oxide nanoparticles (ZnO NPs) toxicological effects. The toxicological effects of ZnO NPs on C. elegans organisms were investigated and the results were evaluated in terms of environment and human health. C. elegans was exposed to commercial ZnO NPs and green synthesized ZnO NPs from Olea europaea (olive tree, OLE). LC50 values were determined by probit analysis (green synthesized ZnO NP LC5024h = 84.97 mg/L, LC5072h = 33.27 mg/L, commercial ZnO NPs LC5024h = 5.75 mg/L, LC5072h = 1.91 mg/L). When the survival times of C. elegans were evaluated by the Kaplan-Meier method, it was seen that commercial ZnO NPs were more toxic than green synthesized ZnO NPs. In MTT tests, it was clearly seen that commercial ZnO NPs and green synthesized ZnO NPs entered the cell and caused different cytotoxicity. While there was a difference between control and 0.5, 2.5, 5, 10, 25, and 50 mg/L doses in commercial ZnO NP applications, there were significant differences between control and 25, 50 mg/L concentrations in green synthesized ZnO NP applications.

10.
Cureus ; 16(3): e56169, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38618371

RESUMO

Aim This study aimed to determine and compare the cytotoxicity of light-cured composite resin (Enlight light cure composite (Ormco, Glendora, California, USA)), light-cured acrylic resin (Orthocryl LC (Dentaurum, Ispringen, Germany)), and the self-cure acrylic (DPI RR cold cure acrylic (Dental Products of India, Bombay Burmah Trading Corporation Ltd., Mumbai, India)) material and to determine which component is best to be used for the purpose of nasal stent fabrication in the nasoalveolar molding (NAM) technique for cleft therapy. Methods Circular discs made from Enlight light cure composite, Orthocryl LC, and self-cure acrylic were submerged for 24 hours in gingival fibroblast media (three discs of each material) and control medium (three discs of each material) that were both contained in plates. After analyzing the optical densities of the plates, the cytotoxicity of the products was assessed by measuring cell viability using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The compiled data was analyzed using IBM SPSS Statistics for Windows, V. 23.0 (IBM Corp., Armonk, NY). The normality of the data was evaluated using the Shapiro-Wilk test. One-way analysis of variance (ANOVA) and pairwise comparison made with Tukey's honestly significant difference (HSD) post hoc test with a significance level (p) of 0.05 were considered. Results The percentage of cell viability was between 80% and 150%. A significant mean difference was noted in the cell viability between the three groups (p=0.009). High mean cell viability was seen in Orthocryl LC. However, there was no significant mean difference between Orthocryl LC and Enlight light cure composite material (p=0.854). Conclusion Both Orthocryl LC and Enlight light cure composite materials are less cytotoxic when compared to the self-cure acrylic resin material and can be used to fabricate the nasal stent component for infants with cleft defects, undergoing NAM procedure.

11.
ACS Appl Bio Mater ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530292

RESUMO

The discovery of specifically tailored therapeutic delivery systems has sparked the interest of pharmaceutical researchers considering improved therapeutic effectiveness and fewer adverse effects. The current study concentrates on the design and characterization of PLGA (polylactic-co-glycolic acid) capped mesoporous silica nanoparticles (MSN)-based systems for drug delivery for pH-sensitive controlled drug release in order to achieve a targeted drug release inside the acidic tumor microenvironment. The physicochemical properties of the nanoformulations were analyzed using TEM, zeta potential, AFM, TGA, FTIR, and BET analyses in addition to DLS size. The final formed PLGA-FoA-MSN-CAP and pure MSN had sizes within the therapeutic ranges of 164.5 ± 1.8 and 110.7 ± 2.2, respectively. Morphological characterization (TEM and AFM) and elemental analysis (FTIR and XPS) confirmed the proper capping and tagging of PLGA and folic acid (FoA). The PLGA-coated FoA-MSN exhibited a pH-dependent controlled release of the CAP (capecitabine) drug, showing efficient release at pH 6.8. Furthermore, the in vitro MTT test on PANC1 and MIAPaCa-2 resulted in an IC50 value of 146.37 µg/ml and 105.90 µg/ml, respectively. Mitochondrial-mediated apoptosis was confirmed from the caspase-3 and annexin V/PI flow cytometry assay, which displayed a cell cycle arrest at the G1 phase. Overall, the results predicted that the designed nanoformulation is a potential therapeutic agent in treating pancreatic cancer.

12.
Heliyon ; 10(6): e27787, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38496878

RESUMO

The current study report a convenient, simple, and low cost approach for the biogenic synthesis of CuO/Fe3O4 nanocomposites (NCs) from pumpkin seeds extract and their vitro cytotoxicity. The characterization of finally obtained CuO/Fe3O4 nanocomposites (NCs) performed using UV-Visible, FT-IR, XRD, XPS, GC-MS, SEM-EDX and TEM analysis. The formation and elemental analysis were determined using the energy-dispersive X-ray (EDX) microanalysis technique. The formation of rod-like monoclinic and spherical, having size range 5 nm-20 nm confirmed by scanning electron microscope (SEM) and transmission electron microscopy (TEM) respectively. Finally, the MTT assay of the synthesized composites was evaluated for toxicity against cancerous cell lines HCT-116 (Colon cancer cell) and A549 (human lung adenocarcinoma cell). The synthesized composite material showed moderate (IC50 = 199 µg/mL) to low (IC50 = 445 µg/mL) activity against HCT-116 and A549 cell lines, respectively.

13.
Biochem Genet ; 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536569

RESUMO

Non-alcoholic fatty liver disease is a multifactorial disorder with complicated pathophysiology ranging from simple steatosis to steatohepatitis and liver fibrosis. Trimethylamine-N-oxide (TMAO) production is believed to be correlated with choline deficiency. This study investigated the expression of miRNA-34a, miRNA-122, and miRNA-192 in the fatty liver cell model treated with different concentrations of TMAO. A fatty liver cell model was developed by exposing HepG2 cells to a mixture of palmitate and oleate in a ratio of 1:2 at a final concentration of 1200 µM for 24 h. The confirmed fatty liver cells were treated with 37.5, 75, 150, and 300 µM of TMAO for 24 h. RT-qPCR was used to quantify the expression of microRNAs in a cellular model. The cellular expression of all microRNAs was significantly higher in treated fatty liver cells compared to normal HepG2 cells (P < 0.05). Only 75 and 150 µM of TMAO significantly increased the expression of miRNA-34a and miRNA-122 compared to both fatty and normal control cells (P < 0.05). Our results provided an experimental documentation for the potential effect of TMAO to change the expression of miR-34a and miR-22 as a mechanism for contributing to the pathogenesis of non-alcoholic fatty liver disease.

14.
Cell Biochem Biophys ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514528

RESUMO

The study carried out systematic research on the influence of selected oxysterols on cells viability, phospholipidosis and the level of secreted extracellular vesicles. Three oxidized cholesterol derivatives, namely 7α-hydroxycholesterol (7α-OH), 7- ketocholesterol (7-K) and 24(S)-hydroxycholesterol (24(S)-OH) were tested in three different concentrations: 50 µM, 100 µM and 200 µM for 24 h incubation with A549 lung cancer cell line. All the studied oxysterols were found to alter cells viability. The lowest survival rate of the cells was observed after 24 h of 7-K treatment, slightly better for 7α-OH while cells incubated with 24(S)-OH had the best survival rate among the oxysterols used. 7-K increased phospholipids accumulation in cells, however, most noticeable effect was noticed for 24(S)-OH. Changes in the level of extracellular vesicles secreted in cells culture after the treatment with oxysterols were also observed. It was found that all oxysterols used increased the level of secreted vesicles, both exosomes and ectosomes. The strongest effect was noticed for 24(S)-OH. Taken together, these results suggest that 7-K is the most potent inducer of cancer cell death, while 7α-OH is slightly less potent in this respect. The lower cytotoxic effect of 24(S)-OH correlates with greater phospholipids accumulation, extracellular vesicles production and better cells survival.

15.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534315

RESUMO

Cisplatin, a powerful chemotherapy medication, has long been a cornerstone in the fight against cancer due to chemotherapeutic failure. The mechanism of cisplatin resistance/failure is a multifaceted and complex issue that consists mainly of apoptosis inhibition through autophagy sensitization. Currently, researchers are exploring ways to regulate autophagy in order to tip the balance in favor of effective chemotherapy. Based on this notion, the current study primarily identifies the differentially expressed genes (DEGs) in cisplatin-treated autophagic ACHN cells through the Illumina Hi-seq platform. A protein-protein interaction network was constructed using the STRING database and KEGG. GO classifiers were implicated to identify genes and their participating biological pathways. ClueGO, David, and MCODE detected ontological enrichment and sub-networking. The network topology was further examined using 12 different algorithms to identify top-ranked hub genes through the Cytoscape plugin Cytohubba to identify potential targets, which established profound drug efficacy under an autophagic environment. Considerable upregulation of genes related to autophagy and apoptosis suggests that autophagy boosts cisplatin efficacy in malignant ACHN cells with minimal harm to normal HEK-293 growth. Furthermore, the determination of cellular viability and apoptosis by AnnexinV/FITC-PI assay corroborates with in silico data, indicating the reliability of the bioinformatics method followed by qRT-PCR. Altogether, our data provide a clear molecular insight into drug efficacy under starved conditions to improve chemotherapy and will likely prompt more clinical trials on this aspect.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Cisplatino , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Células HEK293 , Reprodutibilidade dos Testes , Autofagia
16.
BMC Chem ; 18(1): 52, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486282

RESUMO

Various sets of thiazole, thiophene, and 2-pyridone ring structures containing a dimethylaniline component were synthesized. Substituted thiazoles 2-3 and thiophenes 5-7 were produced by reacting thiocarbamoyl compound 4 with α-halogenated reagents in different basic conditions. Also, a series of 2-pyridone derivatives 9a-f substituted with dimethylaniline was synthesized through Michael addition of malononitrile to α,ß-unsaturated nitrile derivatives 8a-f. The synthesized products were structurally proven by spectroscopic methods such as IR, 1H NMR, 13C NMR, and MS data. Furthermore, the anti-cancer efficacy of the compounds was assessed using the MTT assay on two cell lines: hepatocellular carcinoma (HepG-2) and breast cancer (MDA-MB-231). The results showed the highest growth inhibition for derivatives 2, 6, 7, and 9c, which were further examined for their IC50 values. The IC50 for compound 2 showed equipotent activity (IC50 = 1.2 µM) against the HepG-2 cell line compared to Doxorubicin (IC50 = 1.1 µM). Compounds 2, 6, 7 and 9c showed very good ADME assessments for further drug administration. Moreover, the PASS theoretical prediction for the compounds showed high antimitotic and antineoplastic activities for compounds 2, 6, 7, and 9c, as well as potent inhibition activity for the insulysin enzyme (IDE). Molecular docking stimulations were performed on CDK1/CyclinB1/CKS2 (PDB ID: 4y72) and BPTI (PDB ID: 2ra3). When docked into (PDB ID: 4y72), all of the tested compounds showed considerable inhibition, and the 2-pyridone derivative 9d had the maximum binding affinity (- 8.1223 kcal/mol). While thiophene derivative 6 offered the maximum binding affinity (- 7.5094 kcal/mol) when docked into (PDB ID: 2ra3).

17.
Materials (Basel) ; 17(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541451

RESUMO

The effect of extrusion on the microstructure, mechanical property, corrosion behavior, and in vitro biocompatibility of as-cast Mg-1.5Zn-1.2Y-0.1Sr (wt.%) alloy was investigated via tensile tests, electrochemical methods, immersion tests, methylthiazolyl diphenyltetrazolium bromide (MTT), and analytical techniques. Results showed that the as-cast and as-extruded Mg-1.5Zn-1.2Y-0.1Sr alloys comprised an α-Mg matrix and Mg3Y2Zn3 phase (W-phase). In the as-cast alloy, the W-phase was mainly distributed at the grain boundaries, with a small amount of W-phase in the grains. After hot extrusion, the W-phase was broken down into small particles that were dispersed in the alloy, and the grains were refined considerably. The as-extruded alloy exhibited appropriate mechanical properties that were attributed to refinement strengthening, dispersion strengthening, dislocation strengthening, and precipitation strengthening. The as-cast and as-extruded alloys exhibited galvanic corrosion between the W-phase and α-Mg matrix as the main corrosion mechanism. The coarse W-phase directly caused the poor corrosion resistance of the as-cast alloy. The as-extruded alloy obtained via hydrogen evolution and mass loss had corrosion rates of less than 0.5 mm/year. MTT, high-content screening (HCS) analysis, and cell adhesion tests revealed that the as-extruded alloy can improve L929 cell viability and has great potential in the field of biomedical biodegradable implant materials.

18.
Materials (Basel) ; 17(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38541478

RESUMO

This paper presents the results of a study of the effects of the lanthanide ions Ce3+, Pr3+, Nd3+ and Sm3+ on the electronic structure and antioxidant and biological (antimicrobial and cytotoxic) properties of p-coumaric acid (p-CAH2). Structural studies were conducted via spectroscopic methods (FTIR, ATR, UV). Thermal degradation studies of the complexes were performed. The results are presented in the form of TG, DTG and DSC curves. Antioxidant properties were determined via activity tests against DPPH, ABTS and OH radicals. The reducing ability was tested via CUPRAC assays. Minimum inhibitory concentrations (MICs) of the ligand and lanthanide complexes were determined on E. coli, B. subtilis and C. albicans microorganisms. The antimicrobial activity was also determined using the MTT assay. The results were presented as the relative cell viability of C. albicans, P. aeruginosa, E. coli and S. aureus compared to controls and expressed as percentages. In the obtained complexes in the solid phase, lanthanide ions coordinate three ligands in a bidentate chelating coordination mode through the carboxyl group of the acid. Spectroscopic analysis showed that lanthanide ions increase the aromaticity of the pi electron system of the ligand. Thermal analysis showed that the complexes are hydrated and have a higher thermal stability than the ligand. The products of thermal decomposition of the complexes are lanthanide oxides. In the aqueous phase, the metal combines with the ligand in a 1:1 molar ratio. Antioxidant activity tests showed that the complexes have a similar ability to remove free radicals. ABTS and DPPH tests showed that the complexes have twice the ability to neutralise radicals than the ligand, and a much higher ability to remove the hydroxyl radical. The abilities of the complexes and the free ligand to reduce Cu2+ ions in the CUPRAC test are at a similar level. Lanthanide complexes of p-coumaric acid are characterised by a higher antimicrobial capacity than the free ligand against Escherichia coli bacteria, Bacillus subtilis and Candida albicans fungi.

19.
Open Vet J ; 14(2): 674-682, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38549573

RESUMO

Background: Fertility plays a great role in animal reproduction since high-quality semen improves sheep industry reproduction. The current worldwide data revealed the close relation of C-type natriuretic peptide (CNP) to the reproductive function of rams. Aims: Evaluation of the effect of CNP on cooled sperms using traditional and molecular assays. Methods: Totally, of 20 testicular samples were collected, processed to obtain the semen samples, and divided into two parts; one was treated with a suitable dose of CNP, and the other served as a control. Sperm samples of both groups were cooled for 3 days and tested at 0, 24, 48, and 72 hours. Results: The findings revealed that the suitable dose of CNP-treated sperms was 0.01 × 10-13. Values of individual motility, live sperms, and sperm concentration were reduced significantly in CNP-24h, CNP-48h, and CNP-72h when compared to control; however, abnormal sperms were increased in both control and CNP groups at 24, 48, and 72 hours when compared to values of 0 hour. Concerning turbidmetric analysis, a significant reduction in values of lag time was observed in CNP when compared to control at all times of cooling intervals. In both CNP and control groups, motility index was decreased at 24, 48, and 72 hours when compared to 0 hour. For velocity, significant increases were shown in CNP compared with control at all cooling intervals. However, values of both groups were increased significantly at 24, 48, and 72 hours times when compared to 0 hour. Fraction of rapidly moving sperm of CNP was elevated at 0 hour and decreased at 24, 48, and 72 hours when compared to control. Expression of the hNPR-B gene was reduced gradually in sperms of CNP and control groups at times of cooling intervals. Conclusion: To the best of our knowledge, this first Iraqi study targets the effect of CNP on epididymal sperms of rams. However, changes that occur after excessive CNP exposure remain unclear, and the toxicological profile of CNP requires furthermore supplements.


Assuntos
Peptídeo Natriurético Tipo C , Sêmen , Masculino , Ovinos , Animais , Peptídeo Natriurético Tipo C/genética , Peptídeo Natriurético Tipo C/metabolismo , Peptídeo Natriurético Tipo C/farmacologia , Iraque , Sêmen/metabolismo , Espermatozoides/metabolismo , Análise do Sêmen/veterinária , Carneiro Doméstico
20.
Cureus ; 16(2): e54031, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38481883

RESUMO

Background The value and use of medicinal plants, including the widespread cultivation of Rosmarinus officinalis, have increased rapidly. R. officinalis, a medicinal plant native to the Mediterranean, has received attention for its potential therapeutic benefits. This study evaluates R. officinalis anticancer activity using human epithelial carcinoma (KB) cell lines derived from nasopharyngeal epidermoid carcinoma. The KB cell line is known for its increased sensitivity to specific chemotherapeutic agents (CA), making it a useful model in cancer research. The impact of R. officinalis is assessed using comprehensive analyses of cell viability and gene expression. Aim This study aims to evaluate the anti-cancer effects of R. officinalis on KB cell lines. Materials and methods The R. officinalis leaf extract was separated and used to treat KB cell lines. The cell viability of treated KB cells was determined using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Real-time polymerase chain reaction (RT-PCR) was used to analyze the expressions of matrix metalloproteinase (MMP-9) and tumor-inducing metalloproteins (TIMP-1) messenger ribonucleic acid (mRNA) genes. The statistical analysis was performed. Results This study analyzes the anticancer properties of R. officinalis on KB cell lines. The results show that increasing the concentration of rosemary extract reduces cell viability in malignant cells. Furthermore, the R. officinalis effect on the apoptotic signaling system is demonstrated by a decrease in MMP-9 and TIMP-1 mRNA expressions, as observed by RT-PCR analysis. Conclusion Patients looking for natural anticancer treatments may benefit from biogenically prepared anticancer drugs. The current research focuses on R. officinalis as a potential alternative to chemically synthesized anticancer drugs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...